A Density-Based Clustering Method for Urban Scene Mobile Laser Scanning Data Segmentation

نویسندگان

  • You Li
  • Lin Li
  • Dalin Li
  • Fan Yang
  • Yu Liu
چکیده

The segmentation of urban scene mobile laser scanning (MLS) data into meaningful street objects is a great challenge due to the scene complexity of street environments, especially in the vicinity of street objects such as poles and trees. This paper proposes a three-stage method for the segmentation of urban MLS data at the object level. The original unorganized point cloud is first voxelized, and all information needed is stored in the voxels. These voxels are then classified as ground and non-ground voxels. In the second stage, the whole scene is segmented into clusters by applying a density-based clustering method based on two key parameters: local density and minimum distance. In the third stage, a merging step and a re-assignment processing step are applied to address the over-segmentation problem and noise points, respectively. We tested the effectiveness of the proposed methods on two urban MLS datasets. The overall accuracies of the segmentation results for the two test sites are 98.3% and 97%, thereby validating the effectiveness of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TerraMobilita/iQmulus urban point cloud analysis benchmark

The object of the TerraMobilita/iQmulus 3D urban analysis benchmark is to evaluate the current state of the art in urban scene analysis from mobile laser scanning (MLS) at large scale. A very detailed semantic tree for urban scenes is proposed. We call analysis the capacity of a method to separate the points of the scene into these categories (classification), and to separate the different obje...

متن کامل

Object Recognition in 3D Point Cloud of Urban Street Scene

In this paper we present a novel street scene semantic recognition framework, which takes advantage of 3D point clouds captured by a high-definition LiDAR laser scanner. An important problem in object recognition is the need for sufficient labeled training data to learn robust classifiers. In this paper we show how to significantly reduce the need for manually labeled training data by reduction...

متن کامل

Automated detection of 3D individual trees along urban road corridors by mobile laser scanning systems

300 words): Recently, mobile laser scanning (MLS) has emerged as an efficient means to acquire massive 3D point clouds along urban road corridors for the several applications such as building footprint reconstruction, facade modeling and road traffic inventories. In this paper, we propose an automated strategy to address the issue of detecting 3D individual trees in urban traffic corridors usin...

متن کامل

Urban accessibility diagnosis from mobile laser scanning data

In this paper we present an approach for automatic analysis of urban accessibility using 3D point clouds. Our approach is based on range images and it consists in two main steps: urban objects segmentation and curbs detection. Both of them are required for accessibility diagnosis and itinerary planning. Our method automatically segments facades and urban objects using two hypothesis: facades ar...

متن کامل

Automatic Extraction of Vertical Walls from Mobile and Airborne Laser Scanning Data

Building outlines in cadastral maps are often created from different sources such as terrestrial surveying and photogrammetric analyses. In the latter case the position of the building wall cannot be estimated correctly if a roof overhang is present. This causes an inconsistent representation of the building outlines in cadastral map data. Laser scanning can be used to correct for such estimati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017